Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

Potassium N-(6-oxocyclohexa-1,3-dien-5-ylidenemethyl)glycinate

Verónica Paredes-García et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

 \bigcirc 2000 International Union of Crystallography • Printed in Great Britain – all rights reserved

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

Potassium *N*-(6-oxocyclohexa-1,3-dien-5-ylidenemethyl)glycinate

Verónica Paredes-García, a* Diego Venegas-Yazigi, Alan J. Lough and Ramón Latorre c

^aDepartamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nunoa, Santiago, Chile, and, Departamento de Química, Fac. Cs. Nat., Mat. y del M. Amb., Universidad Tecnológica Metropolitana, Av. J.P. Alessandri 1242, Nunoa, Santiago, Chile, ^bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, and ^cDepartamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile Correspondence e-mail: vparedes@macul.ciencias.uchile.cl

Received 3 May 2000 Accepted 23 May 2000

Data validation number: IUC0000146

We are very interested in characterizing ligands derived from salicylaldehyde and α -amino acids. These ligands form interesting complexes with different transition metals, which are very useful for understanding some biological systems. For

$$K^+$$
. H H O O

Schiff bases derived from salicylaldehyde and different alkylamines or arylamines, the enol-imine form is predominant. The title compound, (I), shows bond distances which are clearly in agreement with the keto-amine form.

Experimental

Crystal data

 $K^+ \cdot C_0 H_8 NO_3^ M_r = 217.26$ Orthorhombic, Pcca a = 13.8864 (2) Å b = 18.4943 (7) Å c = 6.9664 (9) Å V = 1789.1 (2) Å³ Z = 8 $D_x = 1.613 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 18191 reflections $\theta = 2.93-27.49^{\circ}$ $\mu = 0.570$ mm $^{-1}$ T = 100 (1) K Plate, orange $0.30 \times 0.30 \times 0.10$ mm Data collection

KappaCCD diffractometer φ and ω scans with κ offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) $T_{\min} = 0.848$, $T_{\max} = 0.945$ 18 191 measured reflections 2036 independent reflections $\begin{array}{l} 1580 \text{ reflections with } I > 2\sigma(I) \\ R_{\text{int}} = 0.065 \\ \theta_{\text{max}} = 27.49^{\circ} \\ h = -18 \rightarrow 18 \\ k = -24 \rightarrow 24 \\ l = -8 \rightarrow 8 \\ \text{Intensity decay: none} \end{array}$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0531P)^2]$ R(F) = 0.034 + 0.0850P] where $P = (F_o^2 + 2F_c^2)/3$ S = 1.051 $(\Delta/\sigma)_{\max} = 0.001$ $\Delta\rho_{\max} = 0.312 \text{ e Å}^{-3}$ $\Delta\rho_{\min} = -0.44 \text{ e Å}^{-3}$ H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bonding geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
N1-H1N···O3	0.91 (2)	1.91 (2)	2.6310 (19)	135.4 (18)

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SHELXTL/PC* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL/PC*; software used to prepare material for publication: *SHELXTL/PC*.

Data were collected at the University of Toronto (where all structural calculations were carried out) on a Nonius KappaCCD purchased with funds from NSERC Canada. We would like to thank FONDECYT for funding of Project 2960043.

References

Nonius (1997). KappaCCD Server Software. Windows 98 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.
Sheldrick, G. M. (1997). SHELXTL/PC User's Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.